99 bài tập về 7 Hằng đẳng thức đáng nhớ + lời giải

99 bài tập về 7 Hằng đẳng thức đáng nhớ + lời giải

99 bài tập về 7 Hằng đẳng thức đáng nhớ + lời giải

02/08/2022

7 hằng đẳng thức đáng nhớ là một trong những kiến thức có thể nói quan trọng nhất trong trương trình toán lớp 7 và các cấp về sau. Trong bài ngày hôm nay, chúng ta sẽ cùng đi tìm hiểu về 7 hằng đẳng thức đáng nhớ và các dạng biến đổi tương đương của chúng. Ngoài ra sẽ luyện tập áp dụng các hằng đẳng thức vào làm những dạng bài tập cơ bản.

1. 7 hằng đẳng thức đáng nhớ

Cho hai biểu thức A và B. Từ hai biểu thức này, ta có thể lập ra 7 hằng đẳng thức như sau:

  • (A + B)² = A² + 2AB + B²
  • (A – B)²  = A²  – 2AB + B²

⇒ A² +B²  = (A-B)² – 2AB = (A+B)² – 2AB

  • (A + B)(A – B) = A² – B²
  • (A + B)³ = A³ + 3A²B + 3AB² + B³
  • (A – B)³ = A³ – 3A²B + 3A² – B³
  • (A + B)( A² – AB + B²) = A³ +B³
  • (A – B)( A² + AB + B²) = A³B³

2. Bài tập vận dụng:

Bài tập 1: Sử dụng 7 hằng đẳng thức Viết các biểu thức sau dưới dạng tổng

  1. (2x + 1)²
  2. (2x + 3y)²
  3. (x + 1)(x – 1)
  4.  n²
  5. (5x + 3yz)²
  6. (yx – 3ab)²
  7. (x² + 3)(xˆ4 + 9 – 3x²)
  8. (9x + 3)²
  9. (xy + 2yz)²

Lời giải

  1. (2x+1)² = 4x²+ 4x +1
  2. (2x+3y)² = 4x² + 2.2x.3y + 9y² = 4x² + 12x.y + 9y²
  3. (x+1)(x-1) = x²-1
  4. m² n² = (m – n)(m + n)
  5. (5x+3yz)² = 25x² + 2.5x.3yz + 9y²= 25x² + 30xyz + 9y²z²
  6. (yx – 3ab)² =  2.yx.3ab + 9a²b²
  7. (x²+3)(xˆ4 + 9 – 3x²) = (x²)² +  = x]xˆ4+27
  8. (9x+3)² = 81x² + 54x + 9
  9. (xy+2yz)² =x²y² + 2.xy.2yz + 4y²z² = x²y² +4xy² z + 4y² z²

Bài tập 2: Sử Dụng 7 hằng đẳng thức đáng nhớ và rút gọn biểu thức sau:

  1. A=(x+y)² (x-y)²

*Cách 1: Khai triển từng hằng số trong biểu thức B bằng hằng đẳng thức

(A ± B)² = A² ± 2AB+B²

A = (x+y)² (x-y)² = x² + 2xy + y² – (x² – 2xy + y²) = 4xy

*Cách 2: Sử dụng hằng đẳng thức A²B = (A + B)(A – B)

A=(x+y)² (x-y)² = (x+y+x-y)(x+y-x+y) = 2x.2y = 4xy

  1. B = (x+y)² – 2(x+y)(x-y) + (x-y)²

*Cách 1: Khai triển từng hằng số trong biểu thức B bằng hằng đẳng thức

(A ± B)² = A² ± 2AB+B²

B = (x+y)² – 2(x+y)(x-y) + (x-y)² = x² + 2xy + y² 2x² + 2y² + x² – 2xy + y² = 4y²

*Cách 2: 

B = (x+y)² – 2(x+y)(x-y) + (x-y)² = (x + y – x + y)² = (2y)² = 4y²

Bài tập 3: Tính nhanh các biểu thức sau

  1.  153² + 94.153 + 47²
  2.  126² – 126.152 + 5776

Lời giải:

  1. 153² + 94.153 + 47² = 153² + 2.47.153 + 47² = (153+47)² = 200² = 40000
  2. 126² – 126.152 + 5776 = 126² – 2.126.76 + 76² = (126-76)² = 50²

3. Các dạng biến đổi cần lưu ý

  • Chú ý phép tính toán, nhân đơn thức với đa thức, nhân đa thức với đa thức, triển khai hằng đẳng thức. Các bài toán yêu cầu viết lại biểu thức. (Cần lưu ý các quy tắc về nhân đơn đa thức và học thuộc 7 hằng đẳng thức đáng nhớ. Chú ý về dấu của số hạng và dấu của các phép toán.
  • Có thể vận dụng các tính chất về 7 hằng đẳng thức đáng nhớ để tìm ra
    • Bài tập về tìm giá trị nhỏ nhất của một biểu thức. Chúng ta thực hiện bước đầu tiên là biến đổi biểu thức yêu cầu về dạng M = A² + B trong đó A là một biểu thức chứa biến và B là một số hoặc một biểu thức số độc lập. Theo tính chất về bình phương của mọi số thực luôn không âm nên luôn luôn có A² ≥ 0 với mọi giá trị của biến số, do đó A² + B ≥ B nên biểu thức có giá trị nhỏ nhất bằng B. Dấu = xảy ra khi A = 0.
    • Bài tập về tìm giá trị lớn nhất của một biểu thức. Biến đổi biểu thức yêu cầu về dạng M = -A² + B trong đó A là một biểu thức chứa biến và B là một số hoặc một biểu thức số độc lập. Theo tính chất về bình phương của mọi số thực luôn không âm nên luôn luôn có A² ≥ 0 với mọi giá trị của biến số, do đó -A² + B ≤ B nên biểu thức có giá trị lớn nhất bằng B. Dấu = xảy ra khi A=0.

Chú ý: Dựa vào 7 hằng đẳng thức đáng nhớ trên ta còn có thể biến đổi và suy ra các đẳng thức tương đương như sau:

Từ hằng đẳng thức 1); 2); 3) ta có thể mở rộng thêm các đẳng thức sau:

Câu 1: Tính:

a, (x + 2y)2

b, (x – 3y)(x + 3y)

c, (5 – x)2

Lời giải:

a, (x + 2y)2 = x2 + 4xy + 4y2

b, (x – 3y)(x + 3y) = x2 – (3y)2 = x2 – 9y2

c, (5 – x)2 = 52 – 10x + x2 = 25 – 10x + x2

Câu 2: Tính:

a, (x – 1)2

b, (3 – y)2

c, (x – 1/2)2

Lời giải:

a, (x – 1)2 = x2 –2x + 1

b, (3 – y)2 = 9 – 6y + y2

c, (x – 1/2)2 = x2 – x + 1/4

Câu 3: Viết các biểu thức sau dưới dạng bình phương một tổng:

a, x2 + 6x + 9

b, x2 + x + 1/4

c,2xy2 + x2y4 + 1

Lời giải:

a, x2 + 6x + 9 = x2 + 2.x.3 + 32 = (x + 3)2

b, x2 + x + 1/4 = x2 + 2.x.1/2 + (1/2 )2 = (x + 1/2)2

c, 2xy2 + x2y4 + 1 = (xy2)2 + 2.xy2.1 + 1= (xy2 + 1)2

Câu 4: Rút gọn biểu thức:

a, (x + y)2 + (x – y)2

b, 2(x – y)(x + y) + (x + y)2 + (x – y)2

c, (x – y + z)2 + (z – y)2 + 2(x – y + z)(y – z)

Lời giải:

a, (x + y)2 + (x – y)2

= x2 + 2xy + y2 + x2 – 2xy + y2

= 2x2 + 2y2

b, 2(x – y)(x + y) + (x + y)2 + (x – y)2

= [(x + y) + (x – y)]2 = (2x)2 = 4x2

c, (x – y + z)2 + (z – y)2 + 2(x – y + z)(y – z)

= (x – y + z)2 + 2(x – y + z)(y – z) + (y – z)2

= [(x – y + z) + (y – z)]2 = x2

Câu 5: Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng a2 chia cho 5 dư 1.

Lời giải:

Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈N)

Ta có: a2 = (5k + 4)2

= 25k2 + 40k + 16

= 25k2 + 40k + 15 + 1

= 5(5k2 + 8k +3) +1

Ta có: 5(5k2 + 8k + 3) ⋮ 5

Vậy a2 = (5k + 4)2 chia cho 5 dư 1.

Câu 6: Tính giá trị của biểu thức sau:

a, x2 – y2 tại x = 87 và y = 13

b, x3 – 3x2 + 3x – 1 tại x = 101

c, x3 + 9x2+ 27x + 27 tại x = 97

Lời giải:

a, Ta có: x2 – y2 = (x + y)(x – y)

b, Thay x = 87, y = 13, ta được:

x2 – y2 = (x + y)(x – y)

= (87 + 13)(87 – 13)

= 100.74 = 7400

c, Ta có: x3 + 9x2 + 27x + 27

= x3 + 3.x2.3 + 3.x.32 + 33

= (x + 3)3

Thay x = 97, ta được: (x + 3)3 = (97 + 3)3 = 1003 = 1000000

Câu 7: Chứng minh rằng:

a, (a + b)(a2 – ab + b2) + (a – b)(a2 + ab + b2) = 2a3

b, (a + b)[(a – b)+ ab] = (a + b)[a2 – 2ab + b2 + ab] = a3 + b3

c, (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad – bc)2

Lời giải:

a, Ta có: (a + b)(a2 – ab + b2) + (a – b)(a2 + ab + b2) = a3 + b3 + a3 – b3 = 2a3

Vế trái bằng vế phải nên đẳng thức được chứng minh.

b, Ta có: (a + b)[(a – b)2 + ab] = (a + b)[a2 – 2ab + b2 + ab]

= (a + b)(a2 – 2ab + b2) = a+ b3

Vế phải bằng vế trái nên đẳng thức được chứng minh.

c, Ta có: (ac + bd)2 + (ad – bc)2

= a2c2 + 2abcd + b2d2 + a2d2 – 2abcd + b2c2

= a2c2 + b2d2 + a2d2 + b2c2 = c2(a2 + b2) + d2(a2 + b2)

= (a2 + b2)(c2 + d2)

Vế phải bằng vế trái nên đẳng thức được chứng minh.

Câu 8: Chứng tỏ rằng:

a, x2 – 6x + 10 > 0 với mọi x

b, 4x – x2 – 5 < 0 với mọi x

Lời giải:

a, Ta có: x2 – 6x + 10 = x2 – 2.x.3 + 9 + 1 = (x – 3)2 + 1

Vì (x – 3)2 ≥ 0 với mọi x nên (x – 3)2 + 1 > 0 mọi x

Vậy x2 – 6x + 10 > 0 với mọi x.

b, Ta có: 4x – x2 – 5 = -(x2 – 4x + 4) – 1 = -(x – 2)2 -1

Vì (x – 2)2 ≥ 0 với mọi x nên –(x – 2)2 ≤ 0 với mọi x.

Suy ra: -(x – 2)2 -1 ≤ 0 với mọi x

Vậy 4x – x2 – 5 < 0 với mọi x.

Câu 9: Tìm giá trị nhỏ nhất của các đa thức:

a, P = x2 – 2x + 5

b, Q = 2x2 – 6x

c, M = x2 + y2 – x + 6y + 10

Lời giải:

a, Ta có: P = x2 – 2x + 5 = x2 – 2x + 1 + 4 = (x – 1)2 + 4

Vì (x – 1)2 ≥ 0 nên (x – 1)2 + 4 ≥ 4

Suy ra: P = 4 là giá trị bé nhất ⇒ (x – 1)2 = 0 ⇒ x = 1

Vậy P = 4 là giá trị bé nhất của đa thức khi x = 1.

b, Ta có: Q = 2x2 – 6x = 2(x2 – 3x) = 2(x2 – 2.3/2 x + 9/4 – 9/4 )

= 2[(x – 2/3 ) – 9/4 ] = 2(x – 2/3 )2 – 9/2

Vì (x – 2/3 )2 ≥ 0 nên 2(x – 2/3 )2 ≥ 0 ⇒ 2(x – 2/3 )2 – 9/2 ≥ – 9/2

Suy ra: Q = – 9/2 là giá trị nhỏ nhất ⇒ (x – 2/3 )2 = 0 ⇒ x = 2/3

Vậy Q = – 9/2 là giá trị nhỏ nhất của đa thức khi x = 2/3 .

c, Ta có: M = x+ y2 – x + 6y + 10 = (y2 + 6y + 9) + (x– x + 1)

= (y + 3)2 + (x2 – 2.1/2 x + 1/4 + 3/4) = (y + 3)2 + (x – 1/2)2 + 3/4

Vì (y + 3)2 ≥ 0 và (x – 1/2)2 ≥ 0 nên (y + 3)2 + (x – 1/2)2 ≥ 0

⇒ (y + 3)2 + (x – 12)2 + 3/4 ≥ 3/4

⇒ M = 3/4 là giá trị nhỏ nhất khi (y + 3)2 =0

⇒ y = -3 và (x – 1/2)2 = 0 ⇒ x = 1/2

Vậy M = 3/4 là giá trị nhỏ nhất tại y = -3 và x = 1/2

***Quan trọng: Vì bài toán liên quan đến 7 hằng đẳng thức đáng nhớ là dạng bài toán quan trọng, nên ta phải học thuộc lòng 7 hằng đẳng thức được nhắc tới như thuộc bảng cửu chương. Học thuộc trước khi làm bài sẽ giúp chúng ta nhận diện dạng bài toán nhanh hơn và áp dụng đúng công thức để ra kết quả chính xác nhất. Chúc các bạn đạt điểm cao trong các bài toán liên quan đến hằng đẳng thức.

Các bài viết liên quan

Ngày Dự án Khối Trung học – Hàng loạt Dự án học tập ý nghĩa được “trình làng”

Sau nhiều thời gian ấp ủ và xây dựng, Ngày Dự án Khối Trung học đã chính thức được khởi động với hàng loạt các Dự án ý nghĩa được các bạn học sinh báo cáo. Trong hoạt động đầu tiên của Ngày Dự án, các Teen đã có dịp đi du lịch vòng quanh thế giới, đến với nhiều điểm hẹn văn hóa khác nhau với Dự án GLOBAL FAIR.

Tiểu học

Bí kíp kỳ thi – Chuyện bây giờ mới kể

Vậy là các EddieTeen đã vượt qua kì thi học kì I một cách thành công! Chúng tớ đã học tập thật sự rất chăm chỉ đấy. Để có được những bài thi với kết quả rực rỡ, ngoài sự chỉ dạy của các Thầy Cô và sự cố gắng của chính chúng tớ, phải kể đến sự giúp sức của cả lớp nữa đó.

Tiểu học

Eddie Trung học – Khám phá những giá trị văn hóa 54 dân tộc anh em

Một hành trình thú vị của các Eddie Trung học trong Học kì I lần này chính là chuyến đi khám phá Làng Văn hóa - Du lịch Các dân tộc Việt Nam.

Tiểu học