99 bài tập & lời giải Hoán vị – Chỉnh hợp – Tổ hợp lớp 11

99 bài tập & lời giải Hoán vị – Chỉnh hợp – Tổ hợp lớp 11

99 bài tập & lời giải Hoán vị – Chỉnh hợp – Tổ hợp lớp 11

02/08/2022

Hoán vị, Chỉnh hợp, Tổ hợp là kiến thức toán học quan trọng trong chương trình lớp 11 và cũng nằm trong nội dung trọng điểm để ôn thi THPT quốc gia. Đến với dạng bài tập này sẽ dễ gây nhầm lẫn, đòi hỏi các em phải nắm chắc kiến thức, phân biệt được sự khác nhau giữa 3 dạng bài này. Dưới đây chúng ta sẽ cùng đi tìm hiểu định nghĩa và ví dụ liên quan nhé!

1. Hoán vị là gì?

Định nghĩa: Cho n (n ≥ 1) phần tử khác nhau. Với mỗi cách sắp xếp thứ tự của n phần tử mà mỗi phần tử chỉ được có mặt duy nhất một lần, khi đó ta gọi cách sắp xếp đó là hoán vị của n phần tử.  

Định lý về hoán vị:

Số hoán vị của n (n1) phần tử khác nhau được kí hiệu là  và có dạng tổng quát như sau:

2. Chỉnh hợp là gì?

Định nghĩa: Cho một tập hợp số A bất kỳ chứa n (n ≥ 1) phần tử. Khi lấy k phần tử khác nhau từ n phần tử thuộc tập hợp A và sắp xếp k phần tử theo một thứ tự nào đó, khi đó ta gọi cách sắp xếp đó là chỉnh hợp chập k của n phần tử thuộc tập A.

Định lý về chỉnh hợp:

Các chỉnh hợp chập k của n phần tử khác nhau được kí hiệu là và có dạng tổng quát như sau:

3. Tổ hợp là gì?

Định nghĩa: Cho n (n ≥ 1) phần tử khác nhau. Tập con gồm k phần tử khác nhau (không phân biệt thứ tự) từ n phần tử đã cho với điều kiện 0 ≤ k ≤ n. Khi đó tập con gồm k phần tử được gọi là một tổ hợp chập k của n phần tử.

Định lý về tổ hợp:

Số các tổ hợp chập k của n phần tử khác nhau đã cho được kí hiệu là  và có dạng tổng quát như sau:

4. Ví dụ minh hoạ:

  • Bài tập về hoán vị:

Có bao nhiêu cách sắp xếp 10 bạn học sinh trong tổ thành một hàng dọc.

Giải: Cách sắp xếp 10 bạn học sinh trong tổ thành một hàng dọc được gọi là một hoán vị của 10 phần tử. 

Vậy số cách sắp xếp là: = 10! = 3,628,800

  • Bài tập về chỉnh hợp:

Cho một tập hợp A gồm 7 phần tử như sau: A = {9,7,6,5,4,2,1}. Từ tập hợp A ta có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau?

Giải: Ta lấy 4 số khác nhau từ tập hợp A và sắp xếp chúng theo một thứ tự nhất đinh. Khi đó mỗi số được lập ra sẽ là một chỉnh hợp chập 4 của 7 phần tử thuộc tập A.

Vậy có thể lập được = 840 số.

  • Bài tập về tổ hợp:

Trong lớp 9B, một bàn gồm 5 học sinh: 3 nam, 2 nữ. Làm thế nào để chọn ra 2 bạn làm trực nhật?

Giải: Để chọn ra 2 bạn làm trực nhật, ta có một tổ hợp chập 2 của 5 phần tử.

Vậy có số cách chọn là: = 10 cách chọn.

5. Bài tập vận dụng

Bài tập 1 : Trong tủ sách có 10 cuốn sách. Có bao nhiêu cách sắp xếp sao cho quyển thứ nhất kế với quyển thứ hai?

Giải: Có tất cả 10 vị trí, để chọn 2 vị trí liên tiếp trong 10 vị trí có 9 cách.

Hoán vị 2 quyển sách với nhau có 2 cách.

Có 8! cách xếp 8 quyển sách còn lại vào 8 vị trí.

Vậy có tổng cộng số cách là: 9.2.8! = 725760 cách

Bài tập 2: Cho 6 số từ nhiên: 4,5,6,7,8,9. Có bao nhiêu cách lập số tự nhiên chẵn có 3 chữ số khác nhau từ 6 số đã cho?

Giải: Gọi số chẵn có 3 chữ số khác nhau cần tìm có dạng abc.

Vì số abc là số chẵn nên c ∈ {4;6;8}. Vậy có 3 cách chọn c

Để chọn ab từ 5 số còn lại ta có: = 20

Vậy có thể lập được tối đa: 3.=3.20=60 số.

Bài tập 3: Nếu ta dùng 5 màu để tô cho 3 nước khác nhau trên bản đồ và không màu nào được dùng hai lần. Hỏi số cách chọn màu cần tô là bao nhiêu?

Giải: Ta sẽ chọn 3 màu trong 5 màu cho sẵn để tô nước khác nhau. Vậy có  = 60 cách.

Các bài viết liên quan

Ngày Dự án Khối Trung học – Hàng loạt Dự án học tập ý nghĩa được “trình làng”

Sau nhiều thời gian ấp ủ và xây dựng, Ngày Dự án Khối Trung học đã chính thức được khởi động với hàng loạt các Dự án ý nghĩa được các bạn học sinh báo cáo. Trong hoạt động đầu tiên của Ngày Dự án, các Teen đã có dịp đi du lịch vòng quanh thế giới, đến với nhiều điểm hẹn văn hóa khác nhau với Dự án GLOBAL FAIR.

Tiểu học

Bí kíp kỳ thi – Chuyện bây giờ mới kể

Vậy là các EddieTeen đã vượt qua kì thi học kì I một cách thành công! Chúng tớ đã học tập thật sự rất chăm chỉ đấy. Để có được những bài thi với kết quả rực rỡ, ngoài sự chỉ dạy của các Thầy Cô và sự cố gắng của chính chúng tớ, phải kể đến sự giúp sức của cả lớp nữa đó.

Tiểu học

Eddie Trung học – Khám phá những giá trị văn hóa 54 dân tộc anh em

Một hành trình thú vị của các Eddie Trung học trong Học kì I lần này chính là chuyến đi khám phá Làng Văn hóa - Du lịch Các dân tộc Việt Nam.

Tiểu học